级联CNN提出与2015年,在目标检测领域有着很成功的应用。好久好久好久没看过目标检测了,今天被问到这个,临时翻论文到源码,发现还是很容易理解的。只是好久好久好久没玩Caffe,发现Caffe现在丰富了太多。这篇博客介绍的MTCNN人脸检测,就是基于Caffe平台的,与级联CNN有关,清楚所有技术细节之后,决定写一篇博客记录一下。…

C-COT算法是DCF(KCF)算法的又一重要演进算法,该算法在VOT-16上取得了不错的成绩。C-COT使用深度神经网络VGG-net提取特征,通过立方插值,将不同分辨率的特征图插值到连续空间域,再应用Hessian矩阵可以求得亚像素精度的目标位置(就和SURF、SIFT里面获取亚像素精度特征点的思想类似)。确定插值方程之后,还解决了在连续空间域进行训练的问题。C-COT的代码结合了deepSRDCF、SRDCFdeno的样本进化,和C-COT进行插值等算法。这里面博主也有许多地方没有理解,毕竟Martin的数学功底大家都明白,这里就当时写一下自己的理解了。文章代码

        刚有一个idea,用语义分割来做图像跟踪,搜了一下发现已经有人做过了,细细的看了下Paper,和自己相当还不一样。FCN是深度学习语义分割的鼻祖,而这片Paper的名字叫做FCNT,看了之后发现我误会了,此FCN非彼FCN,由于是比较早的算法了,性能和MEEM处于同一层次,不过考虑到这是深度学习方法用于跟踪的重要实践,还是做个笔记好了。

        博主认为图像跟踪过程的本质就是语义的跟踪(我是这么理解的),所以,使用语义分割来完成图像跟踪是自然而然想到的。事实上深度学习用于图像跟踪,也就是利用了其深层特征中的语义信息。这篇博客就主要介绍这篇文献:Visual Tracking with Fully Convolutional Networks。…

cf2_teaser        图像跟踪一直都是计算机视觉领域的难题,事先知道第一帧中的目标位置,然后需要在后续帧中找到目标。先验知识少,目标被遮挡、目标消失、运动模糊、目标和环境的剧烈变化、目标的高速运动、相机的抖动都会对目标跟踪造成影响,图像跟踪一直都是CV领域的难题。

        深度学习用于图像跟踪有两大要解决的问题,一是图像跟踪一般使用在线学习,很难提供大量样本集,二是深度学习使用CNN时,由于卷积池化,最后一层的输出丢失了位置信息,而图像跟踪就是要输出目标的位置。

        2013年以来,深度学习开始用于目标跟踪,并且为这些问题提供了一些解决思路。这篇博客首先阐述图像跟踪今年来的研究进展,然后再介绍深度学习用于图像跟踪近年来的研究,最后附上一些学习资料和相关网站。…

        MatConvNet是一个基于Matlab的深度学习框架,在计算部分,最底层混编了C/C++或者CUDA C,这使得其速度并不是特别慢。就使用体验来说,MatConvNet是非常优秀的,借助于Matlab,定义网络,使用现有模型以及数据可视化都非常方便。

        由于MatConvNet文档和Demo都比较完备,所以这篇博客主要介绍一些GPU的配置细节。…

        今年是DeepLearning诞生十周年,这项技术已相对成熟。这个月,有两本史诗级教科书出炉,这十年的成果做了教科书式的总结,上周MIT的deeplearning教科书定稿,由Ian Goodfellow、Yoshua Bengio、Aaron Courvilla主编,几乎所有深度学习大牛参与其中。初学者学习Deep Learning四处搜集资料和Paper,四处修补知识体系的过程行将成为历史,博主将长期更新博客,对这本书的要点进行阐述。…

        TesnsorFlow是Google第二代机器学习框架,自2015年11月开源以来收到开发者们的欢迎。这里有官方中文文档,特别附带极客学院的版权声明,感谢文档书写者无私的贡献,该文档如有侵权请立即联系博主。…

        随着深度学习的兴起,诞生了许多优秀的深度学习框架,借助深度学习框架完成理论研究、实验和深度学习开发已成为深度学习研究的重要手段。深度学习框架加快了研究的速度,并且使得一般的深度学习研究者也可以轻松设计自己的深度神经网络。由于深度学习框架灵活、多样、高性能、分布式等特点,当前的许多深度学习技术都是基于深度学习框架进行开发的。这篇博客主要介绍TensorFlow、Torch、Theano、Caffe四种深度学习开源框架的特点。…

        深度学习的概念源于人工神经网络的研究。含多隐层的多层感知机就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。…