2019年的时针开始转动,在CNN、RNN、LSTM、GAN、GNN、CAP的潮起潮落中,带来了这篇博客。放上一篇参考引用。 其实个人认为理解GNN的核心问题就是理解图怎么做傅里叶变换。CNN的核心操作时卷积,GNN也是。CNN计算二维矩阵的卷积,GNN计算图的卷积。那么我们定义好图的傅里叶变换和图的卷积就可以了,其媒介就是图的拉普拉斯矩阵。

好了,这篇博客将简要介绍图神经网络的原理,但是不会设计太多数学细节(因为博主数学很烂啦)。通过理解图神经网络的卷积操作,来理解其流程,再会配合代码来做简单解释。…