census        在立体视觉中,常常用到Census变换,Census变换是一种非参数局部变换,其将周围像素的强度映射到一个比特穿,从而捕获图像的结构。同时使用Census变换可以减少由相机增益和偏置引起变化的影响。在立体匹配过程中,将图像做Census变换后,计算像素点之间的明式距离进行匹配,可以得到较好的效果。

        这篇博客主要介绍介绍实现Census变换,由于使用OpenCV的容器和接口,所以直接使用OpenCV调用比较方便。…

        立体视觉中的矩阵变换比较多。总的来说,内参矩阵 K是针对单相机的,通过焦距和主点位置直接表示了相机坐标系和图像坐标系之间的关系,如果考虑镜头的畸变,还需要有畸变系数,如果图像传感器有倾斜,还需要有倾斜因子。基础矩阵和本质矩阵是针对双目的,其中基础矩阵 E根据左右相机的RT关系,表示了对极线关系,基础矩阵是左右摄像机坐标系之间的关系,求解基础矩阵的核心是求左右相机的RT。本质矩阵 F是图像坐标系下的,结合了基础矩阵和内参矩阵,直接反应左右图像坐标系下对应点像素坐标的关系。…

zzy1        有两份资料,一是加州理工大学开发的标定工具箱,其中实现了全套张正友标定,网站也同样也有详细的使用文档。另一份是OpenCV的标定工具箱,其中使用的也是张正友标定,只不过略有简化。如果你不是直接使用C++书写标定程序的话,强烈推荐加州理工大学的标定工具箱。

        张正友Matlab工具箱使用手册,这份文档详细介绍了该工具箱的使用。这篇博客是对这份文档的补充,所以,如果你本着学习工具箱使用方法而来,请点击题头的链接。学习玩使用手册,这篇博客的内容可能会对你进一步了解工具箱有一定帮助。

        再附上张正友1998年的Paper,我们开始学习吧。…

        张正友标定法提出于1998年,自此相机标定只需要自行打印一张棋盘格就可以实现0.5pixel以上的精度,这样的精度已经可以满足绝大多数应用场合的要求。博主这一系列的博客分为三篇,本篇是第一篇,着重介绍数学推导,后面的博客会陆续介绍Matlab工具箱的使用及博主自己对代码的解释和修改。…