
Caffe tutorial

borrowed slides from:
caffe official tutorials

https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p

Recap Convnet

J(W, b) =
1

2
||h(x)� y||2

Supervised learning trained by stochastic gradient descend

1. feedforward: get the activations for each layer and the cost
2. backward: get the gradient for all the parameters
3. update: gradient descend

Outline

• For people who use CNN as a blackbox

• For people who want to define new layers & cost functions

• A few training tricks.

* there is a major update for caffe recently,
we might get different versions

Blackbox Users

http://caffe.berkeleyvision.org/tutorial/
highly recommended!

http://caffe.berkeleyvision.org/tutorial/

Installation

required packages:

 http://caffe.berkeleyvision.org/installation.html

• CUDA, OPENCV
• BLAS (Basic Linear Algebra Subprograms):  

operations like matrix multiplication, matrix addition,  
both implementation for CPU(cBLAS) and GPU(cuBLAS).  
provided by MKL(INTEL), ATLAS, openBLAS, etc.

• Boost: a c++ library.  
> Use some of its math functions and shared_pointer.

• glog,gflags provide logging & command line utilities.  
> Essential for debugging.

• leveldb, lmdb: database io for your program.  
> Need to know this for preparing your own data.

• protobuf: an efficient and flexible way to define data structure.  
> Need to know this for defining new layers.

detailed documentation:

http://caffe.berkeleyvision.org/installation.html
http://www.boost.org
https://code.google.com/p/google-glog/
https://code.google.com/p/gflags/
https://code.google.com/p/leveldb/
http://symas.com/mdb/
https://code.google.com/p/protobuf/

Preparing data
—> If you want to run CNN on other dataset:
• caffe reads data in a standard database format.
• You have to convert your data to leveldb/lmdb manually.

layers {
 name: "mnist"
 type: DATA
 top: "data"
 top: "label"
 # the DATA layer configuration
 data_param {
 # path to the DB
 source: "examples/mnist/mnist_train_lmdb"
 # type of DB: LEVELDB or LMDB (LMDB supports concurrent reads)
 backend: LMDB
 # batch processing improves efficiency.
 batch_size: 64
 }
 # common data transformations
 transform_param {
 # feature scaling coefficient: this maps the [0, 255] MNIST data to [0,

database type

Preparing data

example from mnist: examples/mnist/convert_mnist_data.cpp

how caffe loads data in data_layer.cpp
(you don’t have to know)

this is the only coding needed (chenyi has experience)
declare database

open database

write database

define your network

LogReg ↑

LeNet →

ImageNet, Krizhevsky 2012 →

name: "dummy-net"
layers { name: "data" …}
layers { name: "conv" …}
layers { name: "pool" …}
 … more layers …
layers { name: "loss" …}

net:
blue: layers you need to define
yellow: data blobs

—> If you want to define your own architecture

examples/mnist/lenet_train.prototxt

define your network

name, type, and
the connection
structure
(input blobs and
output blobs)

layer-specific
parameters

name: "mnist"
type: DATA
top: "data"
top: "label"
data_param {
 source:
“mnist-train-
leveldb”
 scale:
0.00390625
 batch_size: 64
}

name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
}

mnist (DATA)

labeldata
name, type, and the
connection structure
(input blobs and
output blobs)

layer-specific
parameters

conv1 (CONVOLUTION)

conv1

data

examples/mnist/lenet_train.prototxt

define your network

loss (LOSS_TYPE)

loss:

layers {
 name: "loss"
 type: SOFTMAX_LOSS
 bottom: "ip"
 bottom: "label"
 top: "loss"
}

define your network

• network does not need to be linear

Data Con-
volve Pool Con-

volve Pool Inner
Prod

...Rect-
ify

Rect-
ify

Pre-
dict

Label

Loss

linear network:

Data Con-
volve Pool Con-

volve Pool Inner
Prod

...Rect-
ify

Rect-
ify

Pre-
dict

Label

Loss

? ?

?

...

...

?

?

? ? Sum

directed acyclic graph:

—> a little more about the network

define your solver

• solver is for setting training parameters.

train_net: "lenet_train.prototxt"
base_lr: 0.01
lr_policy: “constant”
momentum: 0.9

weight_decay: 0.0005

max_iter: 10000

snapshot_prefix: "lenet_snapshot"

solver_mode: GPU

examples/mnist/lenet_solver.prototxt

train your model

./train_lenet.sh

—> you can now train your model by

TOOLS=../../build/tools

GLOG_logtostderr=1 $TOOLS/train_net.bin
lenet_solver.prototxt

finetuning models

● Simply change a few lines in the layer definition new name = new params

—> what if you want to transfer the weight of a existing model to
finetune another dataset / task

Input:
A different source

 Last Layer:
A different classifier

layers {  
 name: "data"  
 type: DATA
 data_param {
 source:
"ilsvrc12_train_leveldb"
 mean_file: "../../data/
ilsvrc12"
 ...
 }
 ...
...
layers {  
 name: "fc8"  
 type: INNER_PRODUCT  
 blobs_lr: 1  
 blobs_lr: 2
 weight_decay: 1  
 weight_decay: 0
 inner_product_param {
 num_output: 1000
 ...
 }

layers {  
 name: "data"  
 type: DATA
 data_param {
 source: "style_leveldb"
 mean_file: "../../data/
ilsvrc12"
 ...
 }
 ...
}
...
layers {  
 name: "fc8-style"  
 type: INNER_PRODUCT  
 blobs_lr: 1  
 blobs_lr: 2
 weight_decay: 1  
 weight_decay: 0
 inner_product_param {
 num_output: 20
 ...
 }

finetuning models

> caffe train —solver models/finetune_flickr_style/solver.prototxt
 —weights bvlc_reference_caffenet.caffemodel

> finetune_net.bin solver.prototxt model_file

old caffe:

new caffe:

 Under the hood (loosely speaking):
 net = new Caffe::Net("style_solver.prototxt");
 net.CopyTrainedNetFrom(pretrained_model);
 solver.Solve(net);

extracting features

Run:
build/tools/extract_features.bin imagenet_model
imagenet_val.prototxt fc7 temp/features 10

model_file

network definition data blobs you
want to extract

output_file
batch_size

layers {
 name: "data"
 type: IMAGE_DATA
 top: "data"
 top: "label"
 image_data_param {
 source: "file_list.txt"
 mean_file: "imagenet_mean.binaryproto"
 crop_size: 227
 new_height: 256
 new_width: 256
 }
}

examples/
feature_extraction/

imagenet_val.prototxt

image list you want to process

MATLAB wrappers

> make matcaffe
install the wrapper:

—> What about importing the model into Matlab memory?

• RCNN provides a function for this:

> model = rcnn_load_model(model_file, use_gpu);

https://github.com/rbgirshick/rcnn

https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/rcnn

More curious Users

nsight IDE
—> needs an environment to program caffe? use nsight
• nsight automatically comes with CUDA, in the terminal hit “nsight”

For this nsight eclipse edition, it supports nearly all we need:
• an editor with highlight and function switches
• debug c++ code and CUDA code
• profile your code

Protobuf

• understanding protobuf is very important to develop your own code on caffe
• protobuf is used to define data structure for multiple programming languages

message student {
string name = 3;

int ID = 2;}

• the protobuf compiler can compile code into
c++ .o file and .h headers

• using these structure in C++ is just like other
class you defined in C++

• protobuf provide get_ set_ has_ function like
has_name()

• protobuf complier can also compile the
code for java, python

student mary;
mary.set_name(“mary”);

Protobuf — a example

message SolverParameter {
 optional string train_net = 1; // The proto file for the training net.
 optional string test_net = 2; // The proto file for the testing net.
 // The number of iterations for each testing phase.
 optional int32 test_iter = 3 [default = 0];
 // The number of iterations between two testing phases.
 optional int32 test_interval = 4 [default = 0];
 optional bool test_compute_loss = 19 [default = false];
 optional float base_lr = 5; // The base learning rate
 optional float base_flip = 21; // The base flipping rate
 // the number of iterations between displaying info. If display = 0, no info
 // will be displayed.
 optional int32 display = 6;
 optional int32 max_iter = 7; // the maximum number of iterations
 optional string lr_policy = 8; // The learning rate decay policy.
 optional float lr_gamma = 9; // The parameter to compute the learning rate.
 optional float lr_power = 10; // The parameter to compute the learning rate.

caffe reads solver.prototxt into a SolverParameter object

protobuf definition
The train/test net protocol buffer definition
train_net: “examples/mnist/lenet_train.prototxt"
test_net: "examples/mnist/lenet_test.prototxt"
test_iter specifies how many forward passes the test should carry out.
In the case of MNIST, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 500 training iterations.
test_interval: 500
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
Display every 100 iterations
display: 100
The maximum number of iterations
max_iter: 10000
snapshot intermediate results
snapshot: 5000

solver.prototxt

Adding layers

$CAFFE/src/layers

implement xx_layer.cpp and xx_layer.cu

SetUp

Forward_cpu Backward_cpu Backward_gpuForward_gpu

Adding layers

show inner_product.cpp and inner_product.cu

tuning CNN

a few tips
• Our Goal: fitting the data as much as possible —> making the

training cost as small as possible.
• Things that we could tune:

• learning rate: large learning rate would cause the the cost go
bigger and finally go to NaN.

• Parameter Initialization: Bad initialization would give no gradient
over parameters —> no learning occurs.

• How to tune those parameters:
• monitor the testing cost after each several iterations.
• monitor the gradient and the value of model parameters (abs

mean of each layer).

