
CS231n Caffe Tutorial

Outline

● Caffe walkthrough
● Finetuning example

○ With demo!
● Python interface

○ With demo!

Caffe

Most important tip...

Don’t be afraid to read the code!

Caffe: Main classes
● Blob: Stores data and

derivatives (header source)

● Layer: Transforms bottom
blobs to top blobs (header + source)

● Net: Many layers;
computes gradients via
forward / backward (header source)

● Solver: Uses gradients to
update weights (header source)

data

DataLayer

InnerProductLayer

diffs
X

data

diffs
y

SoftmaxLossLayer

data

diffs
fc1

data

diffs
W

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/blob.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/blob.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/layer.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/net.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/net.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/solver.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/solver.cpp

Protocol Buffers

● Like strongly typed, binary JSON (site)

● Developed by Google
● Define message types in .proto file
● Define messages in .prototxt or .binaryproto

files (Caffe also uses .caffemodel)
● All Caffe messages defined here:

○ This is a very important file!

http://code.google.com/p/protobuf/
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto

Prototxt: Define Net

Prototxt: Define Net

Layers and Blobs
often have same
name!

Prototxt: Define Net

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Prototxt: Define Net

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Number of output
classes

Prototxt: Define Net

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Number of output
classes

Set these to 0 to
freeze a layer

Getting data in: DataLayer

● Reads images and labels from LMDB file
● Only good for 1-of-k classification
● Use this if possible

● (header source proto)

https://github.com/BVLC/caffe/blob/master/include/caffe/data_layers.hpp#L85
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/data_layer.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L424

Getting data in: DataLayer
layer {
 name: "data"
 type: "Data"
 top: "data"
 top: "label"
 include {
 phase: TRAIN
 }
 transform_param {
 mirror: true
 crop_size: 227
 mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
 }
 data_param {
 source: "examples/imagenet/ilsvrc12_train_lmdb"
 batch_size: 256
 backend: LMDB
 }
}

Getting data in: ImageDataLayer

● Get images and labels directly from image
files

● No LMDB but probably slower than
DataLayer

● May be faster than DataLayer if reading over
network? Try it out and see

● (header source proto)

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/data_layers.hpp#L224
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/layers/image_data_layer.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L527

Getting data in: WindowDataLayer

● Read windows from image files and class
labels

● Made for detection
● (header source proto)

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/data_layers.hpp#L297
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/layers/window_data_layer.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L720

Getting data in: HDF5Layer
● Reads arbitrary data from HDF5 files

○ Easy to read / write in Python using h5py
● Good for any task - regression, etc
● Other DataLayers do prefetching in a separate thread,

HDF5Layer does not
● Can only store float32 and float64 data - no uint8 means

image data will be huge
● Use this if you have to
● (header source proto)

http://www.h5py.org/
https://github.com/BVLC/caffe/blob/master/include/caffe/data_layers.hpp#L143
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L505

Getting data in: from memory

● Manually copy data into the network
● Slow; don’t use this for training
● Useful for quickly visualizing results
● Example later

Data augmentation

● Happens on-the-fly!
○ Random crops
○ Random horizontal flips
○ Subtract mean image

● See TransformationParameter proto
● DataLayer, ImageDataLayer,

WindowDataLayer
● NOT HDF5Layer

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L338

Finetuning

Basic Recipe

1. Convert data
2. Define net (as prototxt)
3. Define solver (as prototxt)
4. Train (with pretrained weights)

Convert Data

● DataLayer reading from LMDB is the easiest
● Create LMDB using convert_imageset
● Need text file where each line is

○ “[path/to/image.jpeg] [label]”

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/tools/convert_imageset.cpp

Define Net

● Write a .prototxt file defing a NetParameter
● If finetuning, copy existing .prototxt file

○ Change data layer
○ Change output layer: name and num_output
○ Reduce batch size if your GPU is small
○ Set blobs_lr to 0 to “freeze” layers

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L54

Define Solver

● Write a prototxt file defining a SolverParameter
● If finetuning, copy existing solver.prototxt file

○ Change net to be your net
○ Change snapshot_prefix to your output
○ Reduce base learning rate (divide by 100)
○ Maybe change max_iter and snapshot

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Define net: Change layer name
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Define net: Change layer name
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name:
weights copied

Define net: Change layer name
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Different name:
weights reinitialized

Demo!

hopefully it works...

Python interface

Not much documentation...

Read the code! Two most important files:
● caffe/python/caffe/_caffe.cpp:

○ Exports Blob, Layer, Net, and Solver classes
● caffe/python/caffe/pycaffe.py

○ Adds extra methods to Net class

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/_caffe.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/_caffe.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py

Python Blobs

● Exposes data and diffs as numpy arrays
● Manually feed data to the network by

copying to input numpy arrays

Python Layers

● layer.blobs gives a list of Blobs for
parameters of a layer

● It’s possible to define new types of layers in
Python, but still experimental
○ (code unit test)

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/python_layer.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/test/test_python_layer.py

Python Nets

Some useful methods:
● constructors: Initialize Net from model prototxt file and

(optionally) weights file
● forward: run forward pass to compute loss
● backward: run backward pass to compute derivatives
● forward_all: Run forward pass, batching if input data is

bigger than net batch size
● forward_backward_all: Run forward and backward

passes in batches

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/_caffe.cpp#L205
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py#L52
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py#L52
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py#L98
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py#L98
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py#L145
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/pycaffe.py#L174

Python Solver

● Can replace caffe train and instead use
Solver directly from Python

● Example in unit test

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/test/test_solver.py

Net vs Classifier vs Detector … ?
● Most important class is Net, but there are

others
● Classifier (code main):

○ Extends Net to perform classification, averaging over
10 image crops

● Detector (code main):
○ Extends Net to perform R-CNN style detection

● Don’t use these, but read them to see how
Net works

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/classifier.py
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/classifier.py
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/caffe/detector.py
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/python/detect.py

Model ensembles

● No built-in support; do it yourself

Questions?

