事件相机作为一种新型相机,其特征提取方法仍然有许多需要探索的地方,目前主流的事件相机特征提取算法都还是将事件信息二维化或者三维化,并没有很好利用事件相机数据量小的特点,也都把一些关键信息丢掉了,这篇博客主要介绍目前常用的事件相机的特征提取方法。用这些方法编码事件,有一些适合给传统算法使用,有一些适合使用CNN进行处理。
成像系统
事件相机(二)事件相机应用
前面一篇博客介绍了事件相机的原理和种类,这一篇博客来介绍一下事件相机的具体应用场景,主要也是对 Event Camera Survey的总结梳理。目前学界研究比较多的是 SLAM、Motion Object Detection、Deblur、HDR、高帧率视频等方向。传统方法在SLAM上使用较多,提取事件特征非常繁琐耗费算力,NN方面在处理事件上有一些探索,但都还没完全成熟。目前主要的产品应用还是手机Deblur、插帧和HDR上(目前只有手机的出货量有机会压低Event Camera的成本)。
事件相机(一)事件相机原理
事件相机(Event Camera)目前分为如下几类:DVS、ATIS、DAVIS等,这类基于事件的相机与传统基于全帧输出的CIS相机不同,具有高帧率、高动态、低延时、低带宽的优点,同时也面临着噪声、Flicker、带宽变化等不利因素。这篇博客重点介绍事件相机产生事件的原理,和目前事件相机的分类。
摄像头模组CRA参数
我们在摄像头模组规格书中和Sensor规格书中都会看到CRA这个光学参数。这里两个CRA的实际含义有所区别。镜头CRA的含义类似于FOV,Sensor CRA则关联传感器像素感光的量子效率。实际设计模组时这两个参数需要匹配。
图像质量评价(一)Imatest介绍与使用
目前接触到的测试图像质量的软件有imatest和dxo analyzer,图像质量的评测需要和测试卡、光源灯器材结合使用,用于测试的器材通常价格昂贵并且越贵越好。网上imatest的破解版软件比较好找,所以相对于dxo analyzer小白用户更多,所以这篇博客简单接受imatest的安装和基本使用。
这篇博客适合新手小白,因为博主也是新手小白,大神可以不用点进来看啦。
机器视觉中的光源与打光
机器视觉主要解决四大问题:定位、测量、检测、识别。在机器视觉中打光和光源影响着系统的稳定性,比如在测量应用中,光照发生10%-20%的变化,就可能导致图像边缘偏移1-2个像素,这些问题在算法层面是不容易解决的。所以了解光源和打光非常重要