京东方的一篇论文,主打轻量级网络做Real-Time SR,只有一层,对标传统bicubic上采样,因为轻量,所以实用,同时一层网络的可解释性也更强。
论文地址:Edge-SR:Super-Resolution For The Masses
a blog driven by interest~
京东方的一篇论文,主打轻量级网络做Real-Time SR,只有一层,对标传统bicubic上采样,因为轻量,所以实用,同时一层网络的可解释性也更强。
论文地址:Edge-SR:Super-Resolution For The Masses
通过视觉测量深度的方法目前分为如下几种,一种是双目立体匹配,该方法的好处是有一个明确的物理模型,存在视差的概念,深度信息是根据时差转换得到,另一种是单目运动,该方法也可以看成一种特殊的双目模型或者多目模型,只不过它是时间上的多目,还有一种方法是完全的单目深度估计,直接由网络端到端给出深度,单目网络在可解释性和可移植性上不如双目和单目运动,但是其效果没有比双目差太多。
随着近年来车载系统视觉方案不断完善,立体视觉问题不断收敛,学界出现了一批轻量级网络,效果还不差,这篇博客主要介绍一个轻量级双目立体匹配网络mobilestereonet,后文简称MSN。博主理解MSN主要贡献还是在与对网络模型的压缩,骨干和后面的特征提取大量使用深度可分离卷积,而论文中提及的一些网络结构,经过博主实验下来,这些并不重要(比如3d卷积用分组卷积替代,网络性能并没有明显降低),直接感受是,参数确实更少,计算也更少。
在ISP pipe中,最后输出的一般都是YUV图像,YUV420的数据量是RGB数据量的两倍,我们在送入CNN处理的时候处理RGB图像居多,如果CNN也可以直接输入YUV图像,那么前级需要的带宽就会减为输入RGB图的一半。
YUVMultiNet提供了一种实用的结构来处理YUV图像。这篇博客只会介绍处理YUV的这种结构,如果对MultiNet感兴趣可以移步原文:https://arxiv.org/pdf/1904.05673.pdf
曝光图像融合通常的应用场景是HDR,传统的图像融合算法分为两类,一类是像素级的图像融合,通过将图像不同频段分离,在像素层及进行融合,另一类是基于变换域的方法,把图像变换到频率、小波域进行图像融合,最后再反变换回来,有些类似于同态滤波的形式。博主之前介绍过Mertens Exposure Fusion、Pyramid Blending、Possion Blending等都是经典的传统图像融合算法。
传统图像融合算法在融合曝光程度差异小的图像时非常有效,但是图像之间曝光差异程度大的时候融合结果就会出现瑕疵,事实上极端曝光情况下的图像融合具有非常大的挑战,这篇博客介绍一种基于无监督的图片融合算法DeepFuse,看名字就知道这是一种CNN的算法实现。
darknet是一个C语言实现的深度学习框架,几乎不依赖任何库,安装编译都很方便,训练好的模型可以直接在opencv上部署,堪称业界良心。这篇博客主要包含目标检测数据标注和预处理、yolo_v3代码编译、模型训练、在opencv上部署,都是简要的笔记。
大概两三年前,博主有发过一篇综述:深度学习综述(二)深度学习用于目标检测 ,那时候主要是Fast-RCNN系列到yolo和ssd系列,之后很久不务正业没有跟进了。最近又开始跟进下,摘抄些笔记,没啥有深度的东西。
梳理下目标检测算法,大致经历了如下发展: 传统机器学习方法(slide window+feature extraction) -> Region Proposal + CNN -> Anchor Based CNN -> Anchor Free CNN。本文简单介绍Anchor Base方法中最著名的YOLO和SSD,Anchor Free方法中的CornerNet。
在图像分类应用下,诞生了不少经典网络。ShuffleNet以速度快和便于移植而著称,这篇博客将简单介绍ShuffleNet,以及Pytorch下模型的训练、保存、微调、生成CaffeModle。
级联CNN提出与2015年,在目标检测领域有着很成功的应用。好久好久好久没看过目标检测了,今天被问到这个,临时翻论文到源码,发现还是很容易理解的。只是好久好久好久没玩Caffe,发现Caffe现在丰富了太多。这篇博客介绍的MTCNN人脸检测,就是基于Caffe平台的,与级联CNN有关,清楚所有技术细节之后,决定写一篇博客记录一下。
FCN语义分割算法已经在很多主流深度学习平台上实现了,包括Caffe、TenserFlow、MatConvNet等。这篇博客主要介绍如何在MatConvNet上运行起FCN语义分割,包括CPU和GPU版本。博主的平台是Matlab2017a+Cuda8.0。
刚有一个idea,用语义分割来做图像跟踪,搜了一下发现已经有人做过了,细细的看了下Paper,和自己相当还不一样。FCN是深度学习语义分割的鼻祖,而这片Paper的名字叫做FCNT,看了之后发现我误会了,此FCN非彼FCN,由于是比较早的算法了,性能和MEEM处于同一层次,不过考虑到这是深度学习方法用于跟踪的重要实践,还是做个笔记好了。
博主认为图像跟踪过程的本质就是语义的跟踪(我是这么理解的),所以,使用语义分割来完成图像跟踪是自然而然想到的。事实上深度学习用于图像跟踪,也就是利用了其深层特征中的语义信息。这篇博客就主要介绍这篇文献:Visual Tracking with Fully Convolutional Networks。
图像跟踪一直都是计算机视觉领域的难题,事先知道第一帧中的目标位置,然后需要在后续帧中找到目标。先验知识少,目标被遮挡、目标消失、运动模糊、目标和环境的剧烈变化、目标的高速运动、相机的抖动都会对目标跟踪造成影响,图像跟踪一直都是CV领域的难题。
深度学习用于图像跟踪有两大要解决的问题,一是图像跟踪一般使用在线学习,很难提供大量样本集,二是深度学习使用CNN时,由于卷积池化,最后一层的输出丢失了位置信息,而图像跟踪就是要输出目标的位置。
2013年以来,深度学习开始用于目标跟踪,并且为这些问题提供了一些解决思路。这篇博客首先阐述图像跟踪今年来的研究进展,然后再介绍深度学习用于图像跟踪近年来的研究,最后附上一些学习资料和相关网站。
MatConvNet是一个基于Matlab的深度学习框架,在计算部分,最底层混编了C/C++或者CUDA C,这使得其速度并不是特别慢。就使用体验来说,MatConvNet是非常优秀的,借助于Matlab,定义网络,使用现有模型以及数据可视化都非常方便。
由于MatConvNet文档和Demo都比较完备,所以这篇博客主要介绍一些GPU的配置细节。
TensorFlow的基本数据单元是tensor(张量),如何讲tensor的值取出,又如何在运算过程中向tensor中传入值呢?Fetch与Feed是TensorFlow中关于数据存取的术语,博主就由代码来简要介绍下Fetch与Feed。
TensorFlow使用图来表示计算任务,图中的节点被称之为op(operation的缩写)。TensorFlow程序通常被组织成一个构建阶段,和一个执行阶段。在构建阶段,op的执行步骤被描述成一个图。在执行阶段,使用会话执行图中的op(op就是节点)。简单的说,先给出描述,只在run()方法中执行操作。