Transformer从NLP发展到视觉,开始改变视觉问题的处理方式,SwinTransformer和ViT都是典型的网络结构,典型的Transformer结构中大量使用Multi-Head Attention。ViT基于经典的Transformer模型,采用图像分块的方式将图像处理的问题转化为seq2seq的问题,这篇博客会从Attention开始,介绍到ViT。
深度学习
神经网络训练量化(QAT)基本概念
QAT(Quantization Aware Training)量化感知训练是神经网络优化模型容量的重要方法,关系到模型精度和性能。pytorch对模型量化支持有三种方式:模型训练完毕后的动态量化、模型训练完毕后的静态量化、模型训练中开启量化QAT。这篇博客主要基于pytorh介绍QAT的基本概念。
使用OpCounter和flops-counter评估pytorch模型大小
在Pytorch中统计模型大小有一个非常好用的工具opcounters,opcounters用法也非常简单,这篇博客介绍opcounters用法。
CNN直接处理YUV图像
在ISP pipe中,最后输出的一般都是YUV图像,YUV420的数据量是RGB数据量的两倍,我们在送入CNN处理的时候处理RGB图像居多,如果CNN也可以直接输入YUV图像,那么前级需要的带宽就会减为输入RGB图的一半。
YUVMultiNet提供了一种实用的结构来处理YUV图像。这篇博客只会介绍处理YUV的这种结构,如果对MultiNet感兴趣可以移步原文:https://arxiv.org/pdf/1904.05673.pdf
论文速览:Optical Flow Estimation from a Single Motion-blurred Image
AAAI 2021接收论文,使用单帧模糊图像估计光流。论文地址:https://arxiv.org/pdf/2103.02996v1.pdf
论文主要有三个贡献:一是首次实现通过单帧运动模糊图像估计光流和运动,二是从视频序列中生成运动模糊图像和groundtruth来训练网络,三是将结果用于运动模糊去除和运动目标分割。
从RNN到Seq2Seq
YOLO_V3从训练到部署
darknet是一个C语言实现的深度学习框架,几乎不依赖任何库,安装编译都很方便,训练好的模型可以直接在opencv上部署,堪称业界良心。这篇博客主要包含目标检测数据标注和预处理、yolo_v3代码编译、模型训练、在opencv上部署,都是简要的笔记。
目标检测算法梳理YOLO、SSD、CornerNet
大概两三年前,博主有发过一篇综述:深度学习综述(二)深度学习用于目标检测 ,那时候主要是Fast-RCNN系列到yolo和ssd系列,之后很久不务正业没有跟进了。最近又开始跟进下,摘抄些笔记,没啥有深度的东西。
梳理下目标检测算法,大致经历了如下发展: 传统机器学习方法(slide window+feature extraction) -> Region Proposal + CNN -> Anchor Based CNN -> Anchor Free CNN。本文简单介绍Anchor Base方法中最著名的YOLO和SSD,Anchor Free方法中的CornerNet。
Pytorch图像分类之ShuffleNet
在图像分类应用下,诞生了不少经典网络。ShuffleNet以速度快和便于移植而著称,这篇博客将简单介绍ShuffleNet,以及Pytorch下模型的训练、保存、微调、生成CaffeModle。
MTCNN进行人脸特征点检测和特征点提取
级联CNN提出与2015年,在目标检测领域有着很成功的应用。好久好久好久没看过目标检测了,今天被问到这个,临时翻论文到源码,发现还是很容易理解的。只是好久好久好久没玩Caffe,发现Caffe现在丰富了太多。这篇博客介绍的MTCNN人脸检测,就是基于Caffe平台的,与级联CNN有关,清楚所有技术细节之后,决定写一篇博客记录一下。
MatConvNet进行FCN语义分割
FCN语义分割算法已经在很多主流深度学习平台上实现了,包括Caffe、TenserFlow、MatConvNet等。这篇博客主要介绍如何在MatConvNet上运行起FCN语义分割,包括CPU和GPU版本。博主的平台是Matlab2017a+Cuda8.0。
图像跟踪(九)FCNT语义跟踪
刚有一个idea,用语义分割来做图像跟踪,搜了一下发现已经有人做过了,细细的看了下Paper,和自己相当还不一样。FCN是深度学习语义分割的鼻祖,而这片Paper的名字叫做FCNT,看了之后发现我误会了,此FCN非彼FCN,由于是比较早的算法了,性能和MEEM处于同一层次,不过考虑到这是深度学习方法用于跟踪的重要实践,还是做个笔记好了。
博主认为图像跟踪过程的本质就是语义的跟踪(我是这么理解的),所以,使用语义分割来完成图像跟踪是自然而然想到的。事实上深度学习用于图像跟踪,也就是利用了其深层特征中的语义信息。这篇博客就主要介绍这篇文献:Visual Tracking with Fully Convolutional Networks。
视频图像跟踪算法综述
图像跟踪一直都是计算机视觉领域的难题,事先知道第一帧中的目标位置,然后需要在后续帧中找到目标。先验知识少,目标被遮挡、目标消失、运动模糊、目标和环境的剧烈变化、目标的高速运动、相机的抖动都会对目标跟踪造成影响,图像跟踪一直都是CV领域的难题。
深度学习用于图像跟踪有两大要解决的问题,一是图像跟踪一般使用在线学习,很难提供大量样本集,二是深度学习使用CNN时,由于卷积池化,最后一层的输出丢失了位置信息,而图像跟踪就是要输出目标的位置。
2013年以来,深度学习开始用于目标跟踪,并且为这些问题提供了一些解决思路。这篇博客首先阐述图像跟踪今年来的研究进展,然后再介绍深度学习用于图像跟踪近年来的研究,最后附上一些学习资料和相关网站。
MatConvNet深度学习框架简介及GPU使用注意事项
MatConvNet是一个基于Matlab的深度学习框架,在计算部分,最底层混编了C/C++或者CUDA C,这使得其速度并不是特别慢。就使用体验来说,MatConvNet是非常优秀的,借助于Matlab,定义网络,使用现有模型以及数据可视化都非常方便。
由于MatConvNet文档和Demo都比较完备,所以这篇博客主要介绍一些GPU的配置细节。
MIT-Deeplearning 学习笔记
今年是DeepLearning诞生十周年,这项技术已相对成熟。这个月,有两本史诗级教科书出炉,这十年的成果做了教科书式的总结,上周MIT的deeplearning教科书定稿,由Ian Goodfellow、Yoshua Bengio、Aaron Courvilla主编,几乎所有深度学习大牛参与其中。初学者学习Deep Learning四处搜集资料和Paper,四处修补知识体系的过程行将成为历史,博主将长期更新博客,对这本书的要点进行阐述。