最近看了一些图像跟踪的Paper,于是图像跟踪系列开更了。开篇介绍的是一种经典的图像跟踪算法MIL(多实例在线学习),提出于2009年,该算法将track-by-detection推向了新高潮。
2006年以来,使用目标检测的方法来处理图像跟踪问题取得了良好的效果,这种方法处理图像跟踪问题相对于处理目标检测问题是有所不同的,处理目标检测问题要求使用的样本量很少,并且实时性要求较高,也就是需要在线学习,快速检测。MIL算法就是在目标周围选取正负样本,通过一种多实例在线学习的方法,训练弱分类器,并且选择合适的特征进行组合,形成强分类器。由于MILBoost的特点,该算法速度较快,并具备抗遮挡能力。